
- -COPY AD-A221 677

The RHET Plan Recognition System
Version 1.0

DTIC
S ELECTE 1

MAY 2 110990 Bradford W. Miller

0 Technical Report 298

January 1990

_I ,r7Tt.N SM751 A
Approved for public releclze(

Distriuncrn Ui"mn e d

UNIVERSITY OF
ROC R
COMPUTER SCIENCE

9o0 OYiY 1Y

.

The RHET Plan Recognition System)
Version 1.0 / .

Bradford W. Miller

The University of Rochester
/ Computer Science Department

Rochester, New York 14627/
/ Technical Report 29S

January 1990

Abstract

RPRS is a hierarchical plan recognition system built within the RHET knowledge represen-
tation system. It provides a powerful system for plan recognition based on the algorithms of
Kautz[Kautz, 1987), with the general reasoning capabilities of RHET. RPRS takes special
advantage of Rhet's type relations, constraints, equality and contextual reasoning abilities.

RPRS is also intended as a demonstration of the Rhet programming and knowledge
representation system's hybrid reasoning capabilities. Utilizing the lisp interface to Rhet,
RPRS allows the user to use the Rhet structured type system to build plan types, and
given some observation or set of observations have Rhet derive the set of plans that are
consistent with these observations. Since RPRS includes the TEMPOS specialized reasoner
for Rhet, steps and observations can have reference to time-intervals, and/or be temporally
constrained with respect to one another.

This work was supported in part by ONR research contract no. N00014-80-C-0197, in part by U.S. Army
Engineering Topographic Laboratories research contract no. DACA76-85-C-0001, and in part by the Air
Force Systems Command, Rome Air Development Center, Griffiss Air Force Base, New York 13441-.07on, and
the Air Force Office of Scientific Research, Boiling AFB, DC 20332 under Contract No. F30602-85-C-0008.
(This contract supports the Northeast Artificial Intelligence Consortium (NAIC).)

Contents

1 Introduction 1

1.1 An Abbreviated Introduction ,o Rhet 2

1.2 An Abbreviated Introduction to TEMPOS 6

2 Defining an Action Type 9

3 Defining a Plan Type 11

4 Recognizing Plans from Observed Actions 13

5 An Example 15

6 RPRS Lisp Interface to Rhet 31

6.1 Overall Design 31

6.2 Initialization and Mode Setup 31

6.3 RPRS Type Definition Functions 32

6.4 The Explanation Generator 35

6.4.1 Finding Relevant Plan Types to Instantiate 35

6.4.2 Instantiation of Plans 35

7 RPRS Function Reference 45

A Installing and Running RPRS 47

CONTENTS

List of Figures

3.1 Rplan Type Description for T-Make-Pasta-Dish 12

5.1 Example's Type Hierarchy Expressed as a Tree 18

6.1 RPRS's Reset-RPRS function - initialization 32

6.2 RPRS's Reset-RPRS function - type hierarchy 33

6.3 Hook to describe step usage to define-subtype 34

6.4 Defining an Action Type 34

6.5 Cplan Type Definition 35

6.6 Common Plan Type Definition 36

6.7 Generating Explanations - Doing Proofs in Rhet 37

6.8 Rhet Code for Finding Plan Types - Cover-Initial-Observation 38

6.9 Rhet Code for Finding Plan Types - Cover-Observation 38

6.10 Rhet Code for Finding Plan Types - Cover-Observations 39

6.11 Rhet Support Code for Parsing Plan Proofs - Proof-List-to-Step-List 39

6.12 Rhet Support Code for Parsing Plan Proofs - Merge-Plan-Instances 40

6.13 Rhet Support Code for Parsing Plan Proofs - Merge-Steps 40

6.14 Rhet Support Code for Parsing Plan Proofs - Merge-Step 41

6.15 Rhet Code for Examining KB - Has-Step-Recursive 42

6.16 Generating Explanations - Building Instances in Rhet 43

Ad
STATEDMT "A" per D.Hughes OTIh. !k-.
ONR/Code liSP j ' 1
TELECON 5/18/90 VG J ,

A', ' ,;,y (,' t,

iii D ,

I-NI

iv LIST OF FIGURES

Chapter 1

Introduction

The RHET Plan Recognition System (RPRS) is a simple yet powerful plan recognition
system built upon the Rhet [Allen and Miller, 1989][Miller, 1989] and TEMPOS [Koomen,
1989][Allen and Miller, 1989](Koomen, 1988] systems. The user interface to this system
is intended to be very similar to working directly with Rhet, and serves as an example of
writing a layered system (in lisp) on Rhet.

Please note that this document is NOT meant to be a manual for RHET, TEMPOS,
or TIMELOGIC. An overview of these systems is given below, however understanding the
details of the examples will require the reference documentation as cited above.

The basic idea is as follows: the user constructs structured types that describe plans,
using Rhet's structured type definition functions and those RPRS provides. These plans
may have other plans as steps, or actions. (In fact, there are two types of plans, those that
can be recognized, and those that are only useful as constituent steps of other plans). The
user then presents a list of one or more observed actions to RPRS, which will then return a
set of contexts and plan instances in these contexts, each of which satisfy all of the observed
actions. The algorithm for doing this is loosely based on [Kautz, 1987], however his system
worked hierarchically and could do graph matching. while RPRS treats every recognizable
plan type (regardless of if it has subtypes) as a separate recognizable plan and works with
contexts instead of trees. It is therefore an offline rather than online algorithm 1 . The
advantage of building the system on Rhet (and TEMPOS) has been the ability to use the
much more powerful notions of structured types, equality, inequality, and time reasoning
that these systems supply. For example, we can construct plans whose agents must be
blood relatives, have eaten dinner within some period of time of each-other, and not have
any offspring in common; we can have complex relationships between the steps of a plan,
e.g. that to get a discount flight one must book one's tickets two weeks in advance of the
departure time, or that for two events, both of which must be done during daylight, the first

RPRS could be enhanced to be online, but the cost may not save enough over the offline algorithm
to make such development worthwhile; in particular considerably more state would have to be maintained
between proofs.

2 CHAPTER 1. INTRODUCTION

one must precede the second. Constraining the first to occur just before nightfall would
force the second to wait until (at least) the next morning.

RPRS is supplied with a demonstration script that shows a variety of examples of
recognizing plans given certain constraints, ambiguous situations, etc..

1.1 An Abbreviated Introduction to Rhet

Rhet is a hybrid Knowledge Representation system that offers a set of tools for building
automated reasoning systems. In overview, one can think of it as COMMON LISP, PRO-
LOG, E-Unification, and a frame language such as KL1 having a head-on collision at 420
miles per second (mps). There are several kinds of knowledge one can assert in Rhet.

Factual One can assert, for instance, that [P A] or that [NOT [P B]]. This can also be
done relative to a context, e.g. [MB [P A]] can be read as "it is mutually believed
among all agents that [P A]".

Deductive / Backward Chaining One can assert in Horn Clause form, things that can
be inferred when a proof is attempted, e.g. [[Q ?x] < [P ?x]]. Given the above
assertions, a proof of [Q B] would succeed. Contexts can also be used in these ex-
pressions.

Constrained Once can postpone proofs or generally constrain variables such that some
predicate is true. This avoids the possible performance inefficiency of backtracking by
only proving the predicate is true of some particular binding, rather than the usual
approach of backtracking through all possible bindings of the variable until one allows
the predicate to succeed. Since a constrained variable can also be a valid proof result,
one can represent what would otherwise be an infinite set.

Inductive / Forward Chaining One can assert in something similar to Horn Clause
form things that can be asserted when factual information is added, e.g. [[IS-BIRD
?x] < [IS-PENGUIN ?x] :forward]] would assert IS-BIRD is true for any object
that IS-PENGUIN is asserted of. Again, these rules may be contextual.

Equality One can assert (Add-Eq [MOTHER-OF SAM] [DEBORAH]), which would al-
low, e.g. [BAKES-COOKIES DEBORAH] to be provable if [BAKES-COOKIES [MOTHER-OF
SAM]] had been asserted. More generally, inequality can be added, e.g. (Add-Ineq
[MOTHER-OF JOE] [MOTHER-OF SAM]) which would not only disallow future as-
sertion that they were equal, but that JOE and SAM are equal since then the two
MOTHER-OF terms above would be equal. Equality and inequality are context sen-
sitive.

Type Structured Types (frames) can be defined. These are extremely flexible and powerful.
In general a type may have one or more roles defined on it. For instance, one might
define a T-PERSON type with roles R-MOTHER, R-FATHER, etc.. These roles are

1.1. AN ABBREVIATED INTRODUCTION TO RHET 3

accessed using accessor functions like [F-MOTHER ?p*T-PERSON]. It is possible
to define constraints between the roles of a type, e.g. [NOTEQ? (F-MOTHER ?self]
[F-FATHER ?self]], as well as setting up type-specific arbitrary relations with other
structured types, e.g. that for objects of type T-TRAVEL-BY-AIRPLANE a step will
be an instance of type T-BUY-AIRLINE-TIX.

Further, functions can have their result type depend on their argument types. See the
examples below.

Procedural The result of a LISP function can be used as a predicate result or bound to
a variable.

Let's look at some simple examples (for the most part, taken from [Allen, 1990]: First
constrained variables... Assert-Axioms simply asserts it's arguments to be true.

(1.1) (ASSERT-AXIOMS [[P A] <1)

Unify attempts to do standard unification between it's two arguments. Note the first
argument in 1.2 is a constrained variable, here ?x is constrained such that [P ?x) must be
true. 1.2 should fail since we can't prove [P B].

(1.2) (UNIFY [ANY ?X [P ?X]] [B])

while 1.3 should succeed since [P A] was asserted.

(1.3) (UNIFY [ANY ?X [P ?X)) [A])

Because Rhet will both try to Prove and Disprove a goal (or any subgoal using Complete
reasoning) it can do simple consistency tests. 1.4 adds rules and facts to the default SBMB 2

context, which is inherited by the SB context.

(1.4) (ASSERT-AXIOMS [[Q] [R]J
[R <]
[[NOT R] < [S]])

Simple proofs do not try to do a disproof. 1.5 and 1.6 will both fail, that is, in the SB
context, we can't prove [NOT Q1 or [NOT R] because neither has been asserted, nor do they
appear on the LHS of a provable rule; so 1.7 will succeed. Had either been provable it
would have failed since it checks on each proof level for inconsistency; that is proving [Q]
will cause a subproof of [NOT Q] which will fail, and then invoke the first axiom above,
causing a subproof of [R]. Similarly this will invoke a subproof of [NOT R], which matches
an unprovable axiom, and so fails, and then the term [R], which has been asserted, is found
and causes the open proofs to succeed.

2Or "System believes, it is Mutually believed among all agents". MB is only accepted as a trailing token
in belief operators, and only works among all agents, otherwise SB stands for System believes, and is special,
any other token, e.g. AB, HB, stand for that agent's beliefs, here A or H. SBHBSB would read the system's
beliefs about H's beliefs about the system's beliefs. For the purposes of these ex, 7lples, one only need to
know that SB inherits everything in SBMB, but SBMB inherits nothing from SB.

4 CHAPTER 1. INTRODUCTION

(1.5) (PROVE [SB [NOT Q33 :SIMPLE)

(1.6) (PROVE [SB [NOT R3l :SIMPLE)

(1.7) (PROVE [SB [Q]1 :COMPLETE)

Now introduce an inconsistency. This will allow [NOT RI to be provable.

(1.8) (ASSERT-AXIOMS [S])

1.9 will succeed since the predicate Q is consistent, but 1.10 will fail because the proof of Q
involves an inconsistency. That is, only 1.10 will attempt to prove [NOT R3, succeed, and
so fail.

(1.9) (PROVE [SB [Q]])

(1.10) (PROVE [SB [Q33 :COMPLETE)

OK, remove the inconsistency.

(1.11) (RETRACT [SI)

Rhet can handle retractions on a contextual basis. 1.12 will retract [R] from the SB
context, and assert [NOT RI there in its place.

(1.12) (ASSERT-AXIOMS [[SB [NOT RI]])

Now 1.13 will fail while 1.14 will succeed. From the above example, you might expect them
both to succeed, because 1.13 doesn't involve a proof of [NOT RI, since it isn't a complete
proof. But what has happened is that in context SB, [RI has actually been rctra.n',! So
it isn't the case we can prove both the [RI that is inherited from SBMB, and the [NOT RI
local to SB, but only the [NOT RI in SB.

(1.13) (PROVE [SB [Q]])

(1.14) (PROVE [q])

This example will define a function SUM whose arguments are always of type integer,
but the object [SUM ?x ?y] is of type EVEN if both ?x and ?y are of type EVEN or of type
ODD, and of type ODD if ?x and ?y are of different types. Declre-FN-Type is how we
declare some function takes arguments of some type and produces a result type. The first
typelist is special; it declares that the arguments will never be supertypes of these types,
and in fact, that Rhet is free to change the type of a term that this function is called on
appropriately.

1.1. AN ABBREVIATED INTRODUCTION TO RHET

(1.15) (DECLARE-FN-TYPE 'SUM
;; useful maxtypes
'(T-INTEGERS T-INTEGERS T-INTEGERS)
'(EVEN EVEN EVEN)
'(ODD ODD EVEN)
'(EVEN ODD ODD)
'(ODD EVEN ODD))

Now 1.16 will cause, for instance, ?x to be constrained to give result 1.17. Note that ?x
and ?y were changed to be ol type T-Integers since that was the maxtype defined for SUM.

(1.16) (UNIFY [P [SUM ?X ?Y)] [P ?Z*ODD])

(1.17) [ANY ?X*T-INTEGERS
[TYPE? [SUM ?X*T-INTEGERS

[ANY ?Y*T-INTEGERS

[TYPE? [SUM ?X ?Y)
*ODD]]]

*ODD))

Last, a small structured type example:

(1.18) (DEFINE-SUBTYPE 'T-PARENT 'T-PERSON :ROLES '((R-CHILD T-PERSON)))

(1.19) (DEFINE-SUBTYPE T-GRAND-PARENT 'T-PARENT
:ROLES '((R-GRANDCHILD T-PERSON)

(R-CHILD T-PARENT))
:CONSTRAINTS '([EQ? [F-GRANDCHILD ?SELF]

[F-CHILD [F-CHILD ?SELF]II)))

1.18 defines a new structured type T-PARENT which inherits from type T-PERSON and has
role R-CHILD also of type T-PERSON. 1.19 then defines a grandparent as a parent with
a grandchild role. It specializes the type of the inherited child role to be a parent, and
constrains the grandchild role to be the child of it's child role. Now we will create a couple
of instances of grandparents; the idea here is we want to see that Rhet maintains the correct
relationships between grandparents, parents, and children.

(1.20) (DEFINE-INSTANCE [Gi] 'T-GRAND-PARENT)

(1.21) (UTYPE 'T-PERSON [G3j)

(1.22) (DEFINE-INSTANCE CG2J 'T-GRAND-PARENT
:R-CHILD [Gi]
:R-GRANDCHILD [G3])

6 CHAPTER 1. INTRODUCTION

Now when we look at the equivalence class of [G3] we will find it is the child of [G1]. the
child of the child of [G23, and the grandchild of [G21.

(1.23) (EQUIVCLASS [G3])

!.2 An Abbreviated Introduction to TEMPOS

The ability to reason about time intervals, as proposed by Allen [Allen, 1983], is an im-
portant adjunct to the planning process. Temporal constraints can be manipulated inde-
pendently of other planning constraints, which allows for the planner to deal with such
subtleties as reasoning about past or future events, dealing with partially constrained or-
dering between plan steps (as opposed to the in.Ftantaneous sequential ordering of a STRIPS
like system, as in [Nilsson, 1980]). This is what motivated our desire to build a planning
system that can take advantage of the temporal world model as elaborated in [Allen and
Koomen, 1983].

TEMPOS extends the reasoning capabilities of Rhet by including hooks and builtins
that cleanly allow Rhet to interface to the Timelogic system. Whenever the user constructs
an object of type T-TIME, the TEMPOS system intercepts the construction and causes
Timelogic to be aware of it. Similarly, should the user or Rhet internally assert two objects
of type T-TIME to be equal, TEMPOS will cause Tinielogic to appropriately constrain the
intervals to be equal3 . TEMPOS also enhances Timelogic by (optionally) adding a number
of axioms to Rhet which allow it to deal with recurrence relations.

As a sample of what TEMPOS will allow us to do, let us examine a simple example.

(1.24) (Define-7 ime [Time-I] [Time-2] [MaxTimel)

This defines three time intervals. Now, assert that Time-1 and Time-2 are separately
contained within the interval MaxTime, and further, that Time-1 ends sometime before
Time-2 ends.

(1.25) (Assert-Axioms [Time-Contains MaxTime Time-i]
[Time-Contains MaxTime Time-2]
[Time-Finishes-Earlier Time-1 Time-2])

This might be useful, say, if some step in a plan needs to complete earlier than some
other step. TEMPOS will allow us to prove that, for instance, there is some time interval
disjoint from Time-I that is contained by Time-2 (since Time-1 finishes earlier than Time-2,
this is what we would expect).

3This also works in reverse; when Timelogic derives that two intervals unambiguously have relation :E,
TEMPOS hooks this derivation and asserts their equality in Rhet.

1.2. AN ABBREVIATED INTRODUCTION TO TEMPOS 7

(1.26) (Prove [and [Time-Skolem [any ?i*t-time
[Time-Disjoint ?i*T-TIME Time-1]

MaxTime]
[Time-Contains-p Time-2 ?i]])

Since TEMPOS is fully integrated with Rhet's reasoning mechanisms, one can use it,
for instance, in forward chaining axioms. This example might be used to express that two
objects cannot be in the same place at the same time.

(1.27) [[Time-Disjoint ?i*t-time ?j*t-time] < [Location ?obl ?locl'*T-Location ?i]
[Location ?ob2 ?loc2*T-Location ?j]
;; True if two objects cannot colocate at
;; th , two locations at same time.
;; Covers, e.g. impossibility of two
;; Elephants in the same bathroom
[Location-Overlap? ?obl ?ob2 ?locl ?loc2]
:forward]

In general, reasoning about time intervals in TEMPOS is just like reasoning about
any other (non-structured) function term object in Rhet. Since TIMELOGIC supports
contextual reasoning, TEMPOS integrates Rhet's context mechanism with TIMELOGIC,
allowing, for example, one to reason about time relationships relative to an agent's beliefs.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Defining an Action Type

Actions are subtypes of the structured type T-ACTION. These have been predefined by
RPRS to be a subtype of T-AGENT-OBJECT which is a structured type of one role:
R-AGENT which is of type T-ANIMATE. Thus, all actions are expected to have an agent,
and (because of the way Rhet's type hierarchies work) the first argument to any Action's
constructor function will be the agent. Actions are not expected to have any special re-
lations (that RPRS will handle, anyway), they are interesting insomuch as they are the
only valid argument to the Explain-Observations function, that is, these are the only objects
that can trigger plan recognition. They axe also expected to appear as Steps in Plans (see
below).

Here is a trivial example:

(2.1) (DEFINE-ACTION-TYPE 'T-GO-TO-WOODS)

2.1 defines a new action type T-GO-TO-WOODS, which is functional (that is, may appear
as a constructor function, and further, is unique, that is two instances with the same or equal
arguments must also be equal'). An example of an instance of this type is [C-GO-TO-WOODS
JOE]. This might appear, for example, as an argument to Explain-Observations, e.g.

(2.2) (EXPLAIN-OBSERVATIONS '([C-GO-TO-WOODS JOE]))

might read loosely as "Return a list of all plans that can be constructed in which Joe
would go to the woods." Note that, by default, Actions and plans do not have a R-TIME
role, though the examples provided with RPRS do, in fact, usually extend T-ACTION to
include such a role. We can add such roles to our actions in a straightforward manner.
First we construct a new Rhet type, a subtype of T-ACTION (which must be the ancestor
of all actions for RPRS to work), which includes any additional roles we wish to consistently
utilize in our problem, e.g. time:

'as defined by Rhet for functional types.

• -- .- =--=oO ~ illllll lln = mnlnlnll B- m --

10 CHAPTER 2. DEFINING AN ACTION TYPE

(2.3) (DEFINE-SUBTYPE 'T-MY-ACTION-TYPE 'T-ACT
:ROLES '((R-TIME T-TIME)))

Now we can define an action type that inherits from our extended type by using the
optional :PARENT keyword argument, e.g.

(2.4) (DEFINE-ACTION-TYPE 'T-DO-SOMETHING-STUPID
:PARENT 'T-MY-ACTION-TYPE
:ROLES '((R-TIME-LOST T-TIME)))

In this example, T-DO-SOMETHING-STUPID could now appear as the parent of
some other action; the thing to remember here is that since all types defined with
DEFINE-ACTION-TYPE are functional; any time the roles of two instances are equal, then
the instances themselves are equal. That is, if we now defined

(2.5) (DEFINE-ACTION-TYPE 'T-DO-SOMETHING-REALLY-STUPID
:PARENT 'T-DO-SOMETHING-STUPID
:ROLES '((R-DEATHS T-NUMBER)))

then [C-DO-SOMETHING-STUPID JOE NOON-TODAY FOUR-HOURS]
is equal to [C-DO-SOMETHING-REALLY-STUPID JOE NOON-TODAY FOUR-HOURS FORTY-TWO]
since the first three roles of this second term are equal to (all of) our first instances roles,
and both are of type T-DO-SOMETHING-STUPID.

Constructor functions for actions will also typically appear as steps in plans, as described
below.

Chapter 3

Defining a Plan Type

Plans are subtypes of the structured type T-PLAN, which is the parent of the two structured
types T-RPLAN and T-CPLAN. These have been predefined by RPRS to be a subtype of
T-AGENT-OBJECT, as for actions above. Thus, all plans are expected to have an agent,
and the first argument to any Plan's constructor function will be the agent. Plans also have
a single initialization, which runs the Rhet builtin [Assert-Relations]; this is to appro-
priately instantiate the STEPS that are passed to Define-Rplan-Type or Define-Cplan-Type.

Two functions are provided for defining possible plans; Define-Rplan-Type declares
a recognizable plan to RPRS, that is, a plan that can be returned as a result of an
Explain-Observations inquiry. Define-Cplan-Type is similar, but may only appear as a step
in another Cplan or Rplan I . Note that like actions, Cplans are functional; with all the
restrictions Rhet places on functional types2.

As in the example above, it is possible to define normal Rhet types that Cplans and
Rplans inherit roles from, however, it is important to realize that any relations (i.e. step
relations) declared on these types will be ignored by RPRS. RPRS depends on the user
using it's lisp interface to Rhet in order to intercept and process the relation fields it is
interested in. This can be used to advantage, however, e.g. if the user wishes to construct
a more abstract type that will never itself appear as a step or is desired to be returned
as a result by RPRS. The main reason for doing such a thing might be to define abstract
steps that are inherited by subtypes without further elaboration. The examples below will
demonstrate such usage.

The simplest presentation of how to define an Rplan is via an example. Figure 3.1
shows an instance of an Rplan definition. Here we are defining a plan for making a pasta
dish, which will consist of three steps, making the noodles, making the sauce and then
boiling the noodles. We constrain the steps so that we must make the noodles before we
boil them, and also so that the agent must be italian. Note how the steps defined make

'Note that Rplans are restricted to not appear in the step of any other plan. They are *not* functional,
as actions and Cplans are.

2 That is, Rhet will create constructor functions for functional types, and thus two instances with the
same roles are inherently equal.

11

12 CHAPTER 3. DEFINING A PLAN TYPE

(DEFINE-RPLAN-TYPE 'T-make-pasta-dish :PARENT 'T-PREPARE-MEAL
:STEPS '#[((:S-1. [C-make-noodles [F-AGENT ?SELF)

?TIME-S-I*T-TIME

?RESULT*T-NOODLE-DISH})
(:5-2. [C-make-sauce [F-AGENT ?SELF]

?TIME-S-2*T-TIM El)
(:5-3. [C-boil [F-AGENT ?SELF]

?TIME-S-3*T-TIME
?RESULT*T-NOODLE-DISH])) #1

:CONSTRAINTS '#[([TIME-DURING IF-TIME [S-1 ?SELF]]
IF-TIME ?SELF]]

[TIME-DURING [F-TIME [S-2 ?SELF]]
[F-TIME ?SELF]]

[TIME-DURING [F-TIME [S-3 ?SELF]]
[F-TIME ?SELF]]

[TIME-RELN [F-TIME [S-1 ?SELF]] (:B :M)
IF-TIME [5-3 ?SELF]]]

[EQ? [F-RESULT [S-1 ?SELF]]
[F-INPUT [S-3 ?SELF]]]

[ITALIAN [F-AGENT ?SELFJJ) #])

Figure 3.1: Rplan Type Description for T-Make-Pasta-Dish

use of the one role our type has, the (inherited) R-AGENT role. The other variables are
simply "placeholders" which allow us to have semantically correct constructor functions3 .
This example shows constraints which use the step accessors on the constructor functions
to refer to the roles on the steps. Note that we do not, for instance, have to assert [EQ?
[F-AGENT ?self] [F-AGENT [S-1 ?self]]]] because this was part of the definition of
the step.

This particular example is interesting in that a constraint is that the agent must be
italian. This means that the agent will be asserted to be italian, if it is not already provably
not italian.

3Such placeholders are supported by the [Assert-Relations] builtin. Note that they are supported only
in the constructor function being defined as a relation, not in any constructor functions being used as a term
of the relation. That is, [C-Humble [C-Foo ?agentet-agent]] is illegal, because the placeholder does not
occur in the outermost constructor where [Assert-Relations) can find it.

Chapter 4

Recognizing Plans from Observed
Actions

Once the plan and action hierarchy has been set up, the user need only call
Explain-Observations on the list of "observed" actions. The system will then create con-
texts in which a plan can be instantiated in which the action appears as a step. Since
constraints on the plan may cause such instantiation to fail, RPRS will delete the failed
context, and try another possibility. Ultimately, it returns a list of contexts so created with
the recognized plans (Rplans) it found. The basic algorithm may be paraphrased as follows:

1. For each observed Action find the set of plans that the action appears as a step.

2. For each Cplan in the above set find the set of plans that the plan appears as a step.

3. Repeat 2. above for new Cplans discovered.

4. Eliminate from the set of Rplans those that do not directly or indirectly refer to all
of the observed actions.

5. Create a new Rhet user context and instantiate the plan (as a side effect running
constraints and initializations of the plan, and instantiating all the steps.

6. If a contradiction has not yet been found, add equalities between the steps of the
Rplan and the respective Cplans and Actions that it refers to (recursively for Cplans
that are steps).

7. If a contradiction was not found, add the Rplan and context to the result list.

The function Show-Explanation can be used to "pretty-print" the result of
Explain-Observations, if desired.

13

14 CHAPTER 4. RECOGNIZING PLANS FROM OBSERVED ACTIONS

Chapter 5

An Example

This example is taken from the script "RPRS:demo;showoff.lisp", and "RPRS:test;cook-
hierarchy-test.isp"; and is due in part to [Kautz, 1987] and his sample implementation.

First, define some actions... Actions are what we will ask to be explained. They may
appear as steps in Cplans or Rplans. In this example we will only deal with Rplans, so all
the steps must be Actions. For our own purposes, we want all actions to have a time role,
so we will define a new type T-NON-END that is an action with a time. It will be used as
the parent of our first "real" action type, T-MAKE-SAUCE.

(5.1) (TSUBTYPE 'T-U 'T-NOODLE-DISH)

(5.2) (DEFINE-SUBTYPE 'T-NON-END 'T-ACTION
:ROLES '((R-TIME T-TIME))) ; all actions have agent roles, btw.

As an effect of Define-Action-Type, we will make T-MAKE-SAUCE a functional struc-
tured type. It inherits the roles of all Actions, namely the Agent, and the roles of T-Non-
End, it's parent, namely Time. Thus constructor functions should appear as [C-Make-Sauce
Agent Time], since the order of the arguments are the roles of the least specific parent first,
down the tree until the current type is hit.

(5.3) (DEFINE-ACTION-TYPE 'T-MAKE-SAUCE :PARENT 'T-NON-END)

(5.4) (DEFINE-ACTION-TYPE 'T-MAKE-MARINARA :PARENT 'T-MAKE-SAUCE)

(5.5) (DEFINE-ACTION-TYPE 'T-MAKE-ALFREDO :PARENT 'T-MAKE-SAUCE)

(5.6) (DEFINE-ACTION-TYPE 'T-MAKE-NOODLES :PARENT 'T-NON-END
:ROLES '((R-RESULT T-NOODLE-DISH)))

(5.7) (DEFINE-ACTION-TYPE 'T-MAKE-SPAGHETTI :PARENT 'T-MAKE-NOODLES)

15

16 CHAPTER 5. AN EXAMPLE

(5.8) (DEFINE-ACTION-TYPE 'T-MAKE-FETTUCINI :PARENT 'T-MAKE-NOODLES)

Normally, we might also want to declare that T-Make-Fettucini and T-Make-Spaghetti
are disjoint. Similarly for Alfredo and Marinara, or Noodles and Sauce. Since this particular
example wouldn't make use of this, we don't bother i .

(5.9) (DEFINE-ACTION-TYPE 'T-BOIL :PARENT 'T-NON-END
:ROLES '((R-INPUT T-NOODLE-DISH)))

Now set up a recognizable plan hierarchy (note that steps will only be actions defined
above, since we arz not using Cplans in this example)

(5.10) (DEFINE-SUBTYPE 'T-END 'T-RPLAN
) ; use this type to capture what our own subtypes need

(5.11) (DEFINE-SUBTYPE 'T-PREPARE-MEAL 'T-END
:ROLES '((R-TIME T-TIME)) ;all plans have agent roles, btw.
:CONSTRAINTS '([INKITCHEN [F-TIME ?SELF] [F-AGENT ?SELF]]))

(5.12) (DEFINE-RPLAN-TYPE 'T-make-pasta-dish :PARENT 'T-PREPARE-MEAL
:STEPS '#[((:S-1. [C-make-noodles [F-AGENT ?SELF]

?TIME-S-V T-TIME
?RESULT*T-NOODLE-DISH])

(:S-2. [C-make-sauce [F-AGENT ?SELF]
?TIME-S-2*T-TIME])

(:S-3. [C-boil [F-AGENT ?SELF]
?TIME-S-3*T-TIME
?RESULT*T-NOODLE-DISHJ)) #]

:CONSTRAINTS '#[([TIME-DURING [F-TIME [S-I ?SELF]]
[F-TIME ?SELF]]

[TIME-DURING [F-TIME [S-2 ?SELFJ]
[F-TIME ?SELF]]

[TIME-DURING [F-TIME [S-3 ?SELF]]
[F-TIME ?SELF]J

[TIME-RELN [F-TIME [S-I ?SELF)] (:B :M)
[F-TIME [S-3 ?SELF]]]

[EQ? [F-RESULT [S-I ?SELFII
[F-INPUT [S-3 ?SELF])]

[ITALIAN [F-AGENT ?SELF]]) #])

'A more complex example, "language-test" is provided with the system that does need and make use of
these disjunction declarations. It's safe to make them in any case.

17

Now, note the specialization of various steps in the above type definition. For example,
we will specialize the first step from a make-noodles to a make-spaghetti, which is a subtype
of make-noodles.

(5.13) (D EFINE-RPLAN-TYPE 'T-make-spaghetti-marinara
:PARENT 'T-MAKE-PASTA-DISH
.STEPS '#[((:S-1 . [C-make-spaghetti [F-AGENT ?SELF]

?TIMES-1*T-TIME
?RESULT*T-NO ODLF- DISH])

(:S-2. [C-make-marinara [F-AGENT ?SELF]
?TIME-S-2*T-TIME]))#])

Now try a different specialization.

(5.14) (D EFINE-RPLAN-TYPE 'T-make-fettucini-alfredo
:PARENT 'T-MAKE-PASTA-DISH
:STEPS '#[((:S-1 .[C-make-fettucini [F-AGENT ?SELF)

?TIME-S-1*T-TIME
?RES ULT*T.NOODLE- DISH])

(:S-2. [C-make-alfredo [F-AGENT ?SELF]
?TIME-S-2*T-TIME]))#])

(5.15) (DEFINE-SUBTYPE 'T-MAKE-MEAT-DISH 'T-PREPARE-MEAL)

(5.16) (D EFINE-RPLAN-TYPE 'T-make-chicken-marinara
:PAR.ENT 'T-make-meat-dish
:STEPS '((:S-5. [C-make-marinara [F-AGENT ?SELF)

?TIME-S-5*T-TIME]))
:CONSTRAINTS '([TIM E- CONTAINS [F-TIME ?SELF)

[F-TIME [S-5 ?SELF]]]))

Now, given some appropriately typed instances:

(5.17) ;; and some agent instances
(UTYPE 'T-ANIMATE [JOE] [SALLY])

(5.18) ;; and some result instances
(UTYPE 'T-NOODLE-DISH [NOODLE-42])

At this point, our type hierarchy looks like Figure 5.1.

18 CHAPTER 5. AN EXAMPLE

ttrnast-spage ti- an t-b e ttci-fed t-noode-dihe-m ina

Figk sue 5.:EapesTypae-nHieach Exrse saTee

19

Notice that the hierarchy has the constraint that the agent of make-pasta-dish must be
Italian2.

What we are trying to show here is that for some particular observation of Joe making
sauce, we will either find four plans (Joe was making Spaghetti Marinara, or Chicken
Marinara, or Fettucini Alfredo or some generic Pasta Dish) or one (Chicken Marinara -
doesn't involve making pasta for which the agent must be italian) depending on what we
know about Joe's heritage. We then run the system on other observations and combinations
of observations; the system must find a set of plans, each of which consistently explains all
of the observations (as opposed to a set of plans that cover the observations).

Some times are defined, hours last one hour starting at the specified hour. define a time
interval that starts between 4 and 5 o'clock and ends between 6 and 7; etc.

Rhet->

(5.19) (LOAD "rprs:test;time-definitions")

Loading RPRS:TEST;TIME-DEFINITIONS.LISP.NEWEST into package RPRS

Rhet->

Create three contexts concerning our agent's status vis the ITALIAN predicate. This is
just a direct call to the Rhet lisp interface to create a user context.

Rhet->

(5.20) (CREATE- UCO NTEXT "IS-ITALIAN" "T")

(oIS- ITALIANo)
Rhet->

Note how we will now ask Rhet to assert a fact in a particular user context. This fact
is not accessible from the root, thus we can create other user contexts that do not inherit
from this one that have incompatible assertions.

Rhet->

(5.21) (ASSERT-AXIOMS [ITALIAN JOE] :CONTEXT (UCONTEXT "IS-ITALIAN"))

((SB- IS-ITALIAN: : IF-or-T-1186231))
Rhet->

Such as this one...

Rhet->

(5.22) (CREATE-UCONTEXT "IS-not-ITALIAN" "T")

2 Henry had a closed world assumption here about the Italian predicate that we can't deal with due to
supporting equality; instead, we run the example three times instead of Henry's two; once when we know
the agent IS NOT italian, once when we know he is, and once when we don't comment; we do this in three
separate contexts.

20 CHAPTER 5. AN EXAMfPLE

(oIS-not-ITALIANo)
Rhet->

(5.23) (ASSERT-AXIOMS [NOT [ITALIAN JOE]]
:CONTEXT (UCONTEXT "IS-not-ITALIAN"))

((ISB-IS-not;-ITALIAN:: IF-or-T-1186241))
Rhet->

Also create a context where it isn't provable one way or the other. RPRS will make the
assertion for us as needed when we try to explain the observations from here.

Rhet->

(5.24) (CREATE- UCO NTEXT "DONT-KNOW" "T")

(oDONT-KNOWo)
Rhet->

First observation is make-sauce(obs-sauce), with agent Joe, during time interval begin-
ning between 4 and 5, and ending between 6 and 7.

explai n- observation returns a list of pairs of recognized plan instances and the context
it created (as a subcontext of the passed user context) in which they were recognized. We
map the SHOWX-EXPLANATION function over the result which gives us our prettyv-printed
output.

Rhet ->

(5.25) (MAPCAR #'SHOW-EXPLANATION
(EXPLAIN-OBSERVATIONS

[C-MAKE-SAU CE
JOE
TIM E-STARTIS-BETWEEN-4-5-EN DS-BETWEEN -6-7]

:UCONTEXT " IS-not- ITALIAN"))

In context: RPRLS-Test-ContextII8772 we found plan ECUR-PLAN118773] of type
CONSTANT

RPRS: :T-MAKE-CHICKEN-MARINARA
(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TINE CUR-PLAN187'73]) ;the slots
with steps

(C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-s-ENDS-BETWEEN-6-7) step 5
[S-4 CUR-PLAN1187731 ;note that these
[S-3 CUR-PLAN118773] extra unused steps are
[S-2 CUR-PLAN1187 7 3] purely an effect of
ES-I. CUR-PLAN1187'731 the show-explanation fn.

((((CUR-PLAN11I8773] "RPRS-Test-Context 118772")))

21

Notice that we eliminated the possibility of make-pasta-dish. Therefore the observation
had to be of make-marinara. Now lets add the fact that Joe is Italian. This fact does not
take a temporal index. Try the observation of make-sauce again.

Rhet->

(5.26) (MAPCAR #'SHOW-EXPLANATION
(EXPLAIN-OBSERVATIONS

[C-MAKE-SAUCE
JOE
TIM E-STARTS-BETWEEN-4-5-EN DS-BETWEE N-6-7]

:UCONTEXT "IS-ITALIAN"))

In context: RPRS-Test-Contextl18944 we found plan [CUR-PLAN118945J of type

:CONSTANT
RPRS: : T-MAKE-CHICKEN-MARINARA

(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TIME CUR-PLAN118945])

with steps
[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7J
[S-4 CUR-PLAN118945]
[S-3 CUR-PLAN118945]

[S-2 CUR-PLAN118945]
ES-I CUR-PLAN118945]

In context: RPRS-Test-Context118894 we found plan [CUR-PLAN118895] of type
:CONSTANT
RPRS: :T-MAKE-FETTUCINI-ALFREDO
(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TIME CUR-PLAN118895)
with steps

[S-5 CUR-PLAN118895]
[S-4 CUR-PLAN1188951

[C-BOIL JOE [F-TIME [S-3 CUR-PLAN118895]]

[F-RESULT [C-MAKE-FETTUCINI JOE
[F-TIME [S-1 CUR-PLAN118895]]
[F-RESULT [S-1 CUR-PLAN118895JJJJJ

[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7
[C-MAKE-FETTUCINI JOE

[F-TIME [S-1 CUR-PLAN118895]]
[F-RESULT [S-1 CUR-PLAN118895])]

In context: RPRS-Test-Context118844 we found plan [CUR-PLAN118845) of type
:CONSTANT
RPRS: :T-MAKE-SPAGHETTI-MARINARA
(RPRLS::R-AGENT [JOE] RPRS::R-TIME [F-TIME CUR-PLAN1188453)

22 CHAPTER 5. AN EXAMPLE

with steps

[S-5 CUR-PLAN 1 8845J
[S-4 CUR-PLAN188451
[C-BOIL JOE [F-TIME ES-3 CUR-PLANi884SJJ

[F-RESULT [C-MAKE-SPAGHETTI JOE
(F-TIME CS-i CUR-PLAN118845))

[F-RESULT ES-i CUR-PLAN18845])I1)
CC-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-.5-ENDS-BETWEEN-6-7J

EC-MAKE-SPAGHETTI JOE
CF-TIME [5-i CUR-PLAN11884SJJ

CF-RESULT ES-i CUR-PLAN1188451J)

In context: RPRS-Test-Contextii8794 we found plan [CUR-PLANiiB79S] of type
:CONJSTANT

RPRS: :T-MAKE-PASTA-DISH
(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TIME CUR-PLANii8795J)
with steps

CS-S CUR-PLAN1187951
[S-4 CUR-PLAN 118795)
[C-BOIL JOE [F-TIME [S-3 CUR-PLANii879S)J

[F-RESULT [C-MAKE-NOODLES JOE
[F-TIME [S-i cUR-PLAN1187'953]
[F-RESULT ES-i CUR-PLAN18795]]JJ]

[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7)
[C-MAKE-NOODLES JOE

[F-TIME [S-i CUR-PLANii8795)]
[F-RESULT ES-i CUR-PLANii8795)]]

(((ECUR-PLAN1i8945J "RPRS-Test-Contextii894411)
(ECUR-PLANii8895) "RPRS-Test-Contextii889411)
([CUR-PLANii884S) "RPRS-Test-Contextii88441)
([CUR-PLANii8795) "RPRS-Test-Contextii8794")))

This time make-pasta-dish and it's subtypes WERE considered. Note that when we
don't know, we wiU assert the agent (JOE) to be italian in those contexts that he is required
to be italian...

Rhet->

(5.27) (LET ((PLAN-DOT-CONTEXTS
(EXPLAIN-OBSERVATIONS

[C-MAKE-SAUCE JOE
TIM E-STARTS-BETWEEN-4-5-EN DS-BETWEEN-6-71

23

:UCONTEXT "DONT-KNOW")))
(MAPC #'(LAM BDA (PLAN-DOT-CONTEXT)

(SHOW-EXPLANATION PLAN-DOT-CONTEXT)
(FORMAT

T "Iltalian? S"
(PROVE

[ITALIAN JOE]
:CONTEXT
(UCONTEXT (CADR P LAN- DOT-CO NTEXT)))))

PLAN-DOT-CONTEXTS))

In context: RPRS-Test-Context1l911S we found plan [CUR-PLAN119116] of type

CONSTANT
RPRS: :T-MAKE-CHICKEN-MARINARA

CRPRS::R-AGENT [JOE) RPRS::R-TIME EF-TIME CUR-PLAN1i9116])
with steps

[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-S-ENDS-BETWEEN-6-7]
[5-4 CUR-PLAN1191l6J
[S-3 CUR-PLAN1191l6l
[S-2 CUR-PLAN119116]
[S-I CUR-PLAN19116]
Italian? :UNKNOWN

In context: RPRS-Test-Contextll9O6S we found plan [CUR-PLAN119O66) of type
CONSTANT
RPRS: :T-MAKE-FETTUCINI-ALFREDO

(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TIME CUR-PLAN119O66])
with steps

[5-5 CUR-PLAN 119066)

[S-4 CUR-PLAN 119066]
[C-BOIL JOE [F-TIME [S-3 CUR-PLAN119066]]

[F-RESULT [C-MAKE-FETTUCINI JOE
[F-TIME [S-1 CUR-PLAN119066)]
[F-RESULT [S-1 CUR-PLAN19066)))]]

[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7)
[C-MAKE-FETTUCINI JOE [F-TIME [S-i CUR-PLAN119066)]

[F-RESULT [S-1 CUR-PLAN119663]
Italian? [ITALIAN JOE)

In context: RPRS-Test-Context119015 we found plan [CUR-PLANiI9Oi6J of type
:CONSTANT
RPRS: :T-MAKE-SPAGHETTI-MARINARA
(RPRS: :R-AGENT [JOE] RPRS: :R-TIME [F-TIME CUR-PLAN119O16J)

24 CHAPTER 5. AN EXAMPLE

with steps

[S-S CUR-PLAN119016]
[S-4 CUR-PLAN119016]
CC-BOIL JOE CF-TIME CS-3 CUR-PLAN119016]]

[F-RESULT [C-MAKE-SPAGHETTI JOE
EF-TIME [S-i CUR-PLAN119O16))
[P-RESULT [S-i CUR-PLANii9016)]))]

[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7)
[C-MAKE-SPAGHETTI JOE [F-TIME ES-1 CURt-PLANii9Oi6)J

[F-RESULT [S-i CUR-PLANi9016111
Italian? [ITALIAN JOE)

In context: RPRS-Test-Contextli8965 we found plan [CUR-PLANii8966) of type
CONSTANT

RPR.S::T-MAKE-PASTA-DISH
(RPRS::R-AGENT [JOE) RPRS::R-TIME [F-TIME CUR-PLAN118966])
with steps

[5-5 CUR-PLAN118966]
[S-4 CUR-PLAN118966]
[C-BOIL JOE [F-TIME [S-3 CUR-PLAN118966)]

[F-RESULT [C-MAKE-NOODLES JOE

[F-TIME [S-1 CUR-PLANi189661]

[F-RESULT [S-1 CUR-PLAN118966111J]
[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6- 7)
[C-MAKE-NOODLES JOE [F-TIME [S-i CUR-PLAN1189661]

[F-RESULT [S-i CUR-PLAN18966]]]
Italian? [ITALIAN JOE]

((([CUR-PLANi19116] "RPRS-Test-Contextli9ii5"1)

([CUR-PLANi19O66] "RPRS-Test-Context 119065")
([CUR-PLANi19Oi6] "RPRS-Test-Context 119015")

([CUR-PLAN 118966) "RPRS-Test-Context 118965"9))

The second observation is making noodles.

Rhet->

(5.28) (MAPCAR #'SHOW- EXPLANATION
(EXPLAIN-OBSERVATIONS

(C-MAKE-NOODLES
JOE
TIM E-STARTS-BETWEE N-6-8-EN DS-B ETWEEN-7-9
NOODLE-42]

:UCONTEXT "IS-ITALIAN"))

25

In context: RPRS-Test-Contextll9266 we found plan [CUR-PLAN119267) of type
:CONSTANT
RPRS::T-MAKE-FETTUCINI-ALFREDO
(RPRS: :R-AGENT [JOE] RPRS: :R-TIME [F-TIME CUR-PLAN119267])
with steps
[S-5 CUR-PLAN119267)
[S-4 CUR-PLAN1 19267)
[c-BOIL JOE [F-TINE [S-3 CUR-PLAN119267]) NOODLE-42)
[C-MAKE-ALFREDO JOE [F-TINE [S-2 CUR-PLAN119267)))
[C-MAKE-NOODLES JOE

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42]

In context: RPRS-Test-Contextll92O7 we found plan [CUR-PLAN119208) of type
:CONSTANT
RPRS: :T-MAKE-SPAGHETTI-MARINARA
(RPRS::R-AGENT [JOE) RPRS::R-TIME (F-TINE CUR-PLAN119208J)
with steps

[s-5 CUR-PLAN 119208]
[S-4 CUR-PLAN119208]
[c-BOIL JOE [F-TIME ES-3 CUR-PLAN1192081) NOODLE-42]
EC-MAKE-NARINARA JOE [F-TINE [S-2 CUR-PLAN119208))J
CC-MAKE-NOODLES JOE

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-421

In context: RPRS-Test-Context119lS7 we found plan [CUR-PLAN119158J of type
CONSTANT

RPRS: :T-NAKE-PASTA -DISH
(RPRS::R-AGENT [JOE] RPRS::R-TIME EF-TINE CUR-PLAN1191SB])
with steps

[S-5 CUR-PLAN119158]
[S-4 CUR-PLAN119158]
[C-BOIL JOE CF-TIME [S-3 CUR-PLAN11915813 NOODLE-42)
[C-MAKE-SAUCE JOE [F-TIME [S-2 CUR-PLAN119158]))
[C-MAKE-NOODLES JOE

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42)

(([CUR-PLAN 119267) "RPRS-Test-Context 119266")
([CUR-PLAN1192O8] "RPRS-Test-Contert1l92O7")
C [CUR-PLAN119158) 'RPRS-Test-Conteztll91S7")))

We can "merge" these together: they can be steps of the same action, a make-pasta-dish
(though we have to rerun the explanation generator)...

26 CHAPTER 5. AN EXAMPLE

Rhet ->

(5.29) (MAPCAR #'SHOW-EXPLANATION
(EXPLAIN-OBSERVATIONS

[C-MAKE-SAUCE
JOE
TIM E-STARTS-BETWEEN-4-5-EN DS-BETWEE N-6-7]
[C-MAKE-NOODLES

JOE
TIM E-STARTS-BETWEEN-6-B-ENDS-BETWEEN-7-9
NOODLE-42]

.UCONTEXT "IS-ITALIAN"))

In context: RPRS-Test-Context119424 we found plan [CUR-PLAN119425] of type

:CONSTANT
RPRS: :T-MAKE-FETTUCINI-ALFREDO

(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TINE CUR-PLAN119425])

with steps

[S-5 CUR-PLAN119425)
[S-4 CUR-PLAN1194251

CC-BOIL JOE CF-TIME CS-3 CUR-PLAN119425]) NOODLE-42]

[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7]
CC-MAKE-NOODLES JOE

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42]

In context: RPRS-Test-Contextll937O we found plan [CUR-PLAN119371J of type

CONSTANT

RPRS: :T-MAKE-SPAGHETTI-MARINARA

(RPRS::R-AGENT [JOE] RPRS::R-TIME [F-TINE CUR-PLAN119371])

with steps

[5-5 MMU-PLAN119371]

CS-4 CUR-PLAN119371]
CC-BOIL JOE [F-TIME [S-3 CUR-PLAN119371)) NOODLE-421

CC-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN -6-7)
CC-MAKE-NOODLES JOE

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42)

In context: RPRS-Test-Context119316 we found plan ECUR-PLAN119317) of type
CONSTANT

RPRS: :T-MAKE-PASTA-DISH

(RPRS: :R-AGENT [JOE] RPRS: :R-TIME [F-TIME CUR-PLAN119317])

with steps

[S-5 CUR-PLAN119317]

27

[S-4 CUR-PLAN119317)
[C-BOIL JOE [F-TIME ES-3 CUR-PLAN119317]) NOODLE-42]
[C-MAKE-SAUCE JOE TIME-STARTS-BETWEEN-4-5-ENDS-BETWEEN-6-7]
[C-MAKE-NOODLES JOE

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42]

C(([CUR-PLAN119426] "RPRS-Test-Context119424")
([CUR-PLAN1 19371] 1"RPRS-Test-Contert 119370")
([CUR-PLAN119317] "RPRS-Test-Contextll93l6")))

Now consider an observation of make-noodles with a different agent. Constants like agent
are considered unique names (via the ADD-INEQ function), and thus all are unequal.

Rhet->

(5.30) (ASSERT-AXIOMS [ITALIAN SALLY])

((SBMB-T: :IF-or-T- 1194781))
Rhet->

(5.31) (ADD-INEQ [JOE] [SALLY)

(T)
Rhet->

(5.32) (MAPCAR #'SHOW-EXPLANATION
(EXPLAIN-OBSERVATIONS

[C-MAKE-NOODLES
SALLY
TIM E-STARTS-BETWEEN-6-8-EN DS-BETWEEN-7-9
NOODLE-42]))

In context: RPRS-Test-Contextll9S89 we found plan [CUR-PLAN1I9S9OJ of type
:CONSTANT

RPRS: :T-MAKE-FETTUCINI-ALFREDO
(RPRS::R-AGENT [SALLY] RPRS::R-TIME [F-TIME CUR-PLAN119590])
with steps

[S-S CUR-PLAN 119590)
[S-4 CUR-PLAN 119590)
[C-BOIL SALLY [F-TIME [S-3 CUR-PLAN119590)) NOODLE-42]
[C-MAKE-ALFREDO SALLY [F-TIME [S-2 CUR-PLAN119590]]]
[C-MAKE-NOODLES SALLY

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42]

28 CHAPTER 5, AN EXAMPLE

In context: RPRS-Test-Contextli9S30 we found plan [CUR-PLANi19531 of type
:CONSTANT

RPRS: :T-MAKE-SPAGHETTI-MARINARA

(RPRS::R-AGENT [SALLY] RPRS::R-TIME [F-TIME CUR-PLAN119531])

with steps
[S-5 CUR-PLAN119531]
[S-4 CUR-PLAN119531J
[C-BOIL SALLY [F-TIME [S-3 CUR-PLAN11953111 NOODLE-42]
[C-MAKE-MARINARA SALLY [F-TIME [S-2 CUR-PLAN119531]))

[C-MAKE-NOODLES SALLY
TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42J

In context: RPRS-Test-Context119480 we found plan [CUR-PLAN119481J of type
:CONSTANT
RPRS: :T-MAKE-PASTA-DISH
(RPRS::R-AGENT [SALLY] RPRS::R-TIME [F-TIME CUR-PLAN119481])
with steps

[S-S CUR-PLAN119481]
[S-4 CUR-PLAN119481)
[C-BOIL SALLY [F-TIME [S-3 CUR-PLA119481]J NOODLE-42]
CC-MAKE-SAUCE SALLY [F-TIME [S-2 CUR-PLAN119481]]]
[C-MAKE-NOODLES SALLY

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42]

((([CUR-PLAN119590] "RPRS-Test-Context119589")
([CUR-PLAN119531] "RPRS-Test-Contextll9530")
([CUR-PLAN1194813 "RPRS-Test-Context119480")))

Try to match this with the original make-sauce. It will fail, because agent roles differ 3.

Rhet->

(5.33) (MAPCAR #'SHOW-EXPLANATION
(EXPLAIN-OBSERVATIONS

[C-MAKE-SAUCE JOE
TIM E-STARTS-B ETWEEN-4-5-EN DS-B ETWEEN-6-7]

[C-MAKE-NOODLES SALLY
TIM E-STARTS-BETWEEN-6-8-EN DS-B ETWEE N-7-9
NOODLE-42]

:UCONTEXT "IS-ITALIAN"))

3 Actually, while Henry could do this, we have to rerun the explanation proof.

29

(NIL)
Rhet->

Lets check out the temporal constraints, now. We'll observe a boiling event, but the
time we be BEFORE the make-noodles event. This conflict will prevent a match.

Rhet->

(5.34) (MAPCAR #'SHOW- EXP LANATIO N
(EXP LAI N-OBSERVATIONS

[C-BOIL SALLY HOUR-i NOODLE-421
[C-MAKE-NOODLES

SALLY
TIM E-STARTS-BETWEEN-6-8-EN DS-BETWEEN-7-9
NOODLE-421))

(NIL)
Rhet ->

Now lets find a LATER boiling event. It should match okay.

Rhet ->

(5.35) (MAPCAR #'SHOW-EXPLANATION
(EXPLAIN-OBSERVATIONS

[C-BOIL SALLY
TIM E-STARTS-BETWEEN-9-10- EN DS- BETWEEN-1 1- 12
NOODLE-421

[C-MAKE-NOODLES
SALLY
TIM E-STARTS-B ETWEEN-6-8-EN DS- BETWEE N-7-9
NOODLE-42]))

In context: RPRS-Test-Contextl200S3 we found plan [CUR-PLAN120054] of type
CONSTANT

RPRS: :T-MAKE-FEJTUCINI-ALFREDO
(RPRS: :R-AGENT [SALLY) RPRS: :R-TIME [F-TIME CUR-PLAN120054J)
with steps

ES-5 CUR-PLAN120054)
CS-4 CUR-PLAN 120054)
[C-BOIL SALLY TIME-STARTS-BEIWEEN-9-10-ENDS-BETWEEN-11-12 NODDLE-42]
CC-MAKE--ALFEEDO SALLY [F-TIME [S-2 CUR-PLAN120054]))
[C-MAKE-NOODLES SALLY

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-42)

In context: RPRS-Test-Contextl20000 we found plan [CUR-PLAN120001] of type

30 CHAPTER 5. AN EXAMPLE

:CONSTANT
RPRS: :T-MAKE-SPAGHETTI-MARINARLA
CRtPRS::R-AGENT [SALLY] RPRS::R-TIME [F-TIME CUR-PLAN120001])
with steps

[S-S CUR-PLAN120001]
[5-4 CUR-PLAN120001)
[C-BOIL SALLY TIME-STARTS-BETWEE.N-9- 10-ENDS-BETWEEN- 11-12 NOODLE-421
EC-MAKE-MARINARA SALLY [F-TIME [S-2 CUR-PLAN120001]])
[C-MAKE-NOODLES SALLY

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NODDLE-42]

In contoxt: RPRS-Test-Context119946 we found plan [CUR-PLAN119947) of type

: CONSTANT
RPRS::T-MAKE-PASTA-DISH
(RPRS:.-R-AGENT [SALLY] RPRS::R-TIME [F-TIME CUR-PLAN119947)
with steps

[S-S CUR-PLAN 119947]

[S-4 CUR-PLAN119947]
[C-BOIL SALLY TIME-STARTS-BETWEEN-9-10-ENDS-BETWEEN-11-12 NOODLE-42]
[C-MAKE-SAUCE SALLY [F-TIME [S-2 CUR-PLAN119947]]
[C-MAKE-NOODLES SALLY

TIME-STARTS-BETWEEN-6-8-ENDS-BETWEEN-7-9 NOODLE-421

((([CUR-PLAN120054] "RPRS-Test-Contextl20053")
C [CUR-PLAN120001) "RPRS-Test-Contextl20000")
([CUR-PLAN119947] "RPRS-Test-Contextll9946")))

Chapter 6

RPRS Lisp Interface to Rhet

This chapter intends to show how RPRS uses Rhet (and TEMPOS), and serve as a guide
to the user building other systems that use Rhet as their KR engine.

6.1 Overall Design

RPRS uses Rhet in two different distinct ways. First, it asserts to Rhet an association
between plan steps of a plan type and action types. RPRS supplies a simple PROLOG like
Horn clause program to derive a set of Rplans that each completely cover the presented
observations. Second it uses Rhet to (attempt) to instantiate these Rplans, each in their
own context, including the user's constraints, initializations, and steps. Should an error
occur at this time, RPRS tosses the Rplan as inconsistent. Normally a plan would be
uninstantiable because there is an inconsistency between the constraints of the structured
type and the actual observation. For instance, in the example in the last chapter, the Agent
object of all steps had to be identical, and trying to recognize observations by two agents
caused no Rplans to be found.

One reason for separating recognition into two phases' is to maximize the amount of
work that does NOT involve Rhet's equality system (which is what maintains most of the
information about structured types, e.g. accessor slot equivalence). Adding equalities is a
very inefficient operation in Rhet, so it should be avoided whenever possible'

In the following sections, various portions of the RPRS code are presented and discussed.

6.2 Initialization and Mode Setup

'other than pedagogical ones
2 Note that looking up equalities is very efficient; the price is paid at add time on the assumption that

proof steps that will check the equality occur much more often than adding new information.

31

32 CHAPTER 6. RPRS LISP INTERFACE TO RHET

(DEFUN RESET-RPRS 0
"Reset the RPRS system to the just-loaded ane initialized condition."
(RESET-RHETORICAL)
(DEFINE-REP-RELATION :STEPS :INHERIT-TYPE :MERGE

:FN-DEFINITION-HOOK 'STEP-RELATION-DEFINITION-HOOK)
(SET-CONTRADICTION-MODE :THROW 'RPRS-CONTRADICTION-FOUND)
(TEMPOS::RESET-TEPOS :TT-AXIOMS-P T :AUTO-REFERENCE :ON)
(SETQ RHET-TERMS:*INHIBIT-MAXTYPE-WARNINGS* T) ;yeah, yeah.

Figure 6.1: RPRS's Reset-RPRS function - initialization

Figure 6.1 and 6.2 display the RPRS reset function. In figure 6.1 we reset the underlying
reasoning systems (both Rhet and Tempos), as well as defining a definition hook for the
:STEPS relations type, which appears in figure 6.3.

Figure 6.2 defines useful types for RPRS to use for representing plans and actions. Note
the usage of the Initializations option on the T-PLAN type; all plans will have a steps
relation, each element of the relation list will have a CAR which is an accessor's name for
the step, and a CDR which is a constructor function; the step itself.

The hook itself (in figure 6.3) then uses this notion of a step to find the function type
of the accessor, if it exists3 . In either case, the hook tells Rhet that the accessor when
presented with an argument of the type we are defining will result in the type of the
constructor function in the step itself.

The TDisjoint and TXSubtype calls make Rhet more c.E.cient, : icus bad bindings
for a variable are discarded sooner.

6.3 RPRS Type Definition Functions

Defining new actions, as in figure 6.4, is as simple as translating the call into the ap-
propriate one for Rhet. Defining new plans, as in figures 6.5 4 and 6.6, is more complicated.
Here, RPRS makes various Rhet assertions about the structure of the plans. In particular,
we first declare the new type to Rhet using a TSubType call. Then we use Rhet's structured
type functions (either Define-Functional-Subtype or Define-Subtype) to instantiate the plan
as a Rhet structured type with a STEPS relation of the passed steps. Last we process each
step in order to make an assertion of the form:

(6.1) [HAS-STEP :CPLAN ?plan-type ?step-type ?step-constructor-fn]

3If not, it can define a maxtype, which is used by the parser to constrain the legal types of arguments in
a function term.

'Define-Rplan-Type is similar.

6.3. RPRS TYPE DEFINITION FUNCTIONS 33

;; give T-AGENT-OBJECT a REP name later,
;; but need to maxtype F-AGENT first.
(TSUBTYPE 'T-U 'T-AGENT-OBJECT)
(DEFINE-SUBTYPE 'T-ANIMATE 'T-U)
(DECLARE-FN-TYPE 'F-AGENT '(T-AGENT-OBJECT T-ANIMATE)) ; set maxtype
(DEFINE-SUBTYPE 'T-AGENT-OBJECT 'T-U

:ROLES '(CR-AGENT T-ANIMATE)))
(TDISJOINT 'T-ANIMATE 'T-AGENT-OBJECT 'T-TIME)
;; plans must be a subtype of this. Necessary slots
;; common to all plans defined here.
(DEFINE-SUBTYPE 'T-PLAN 'T-AGENT-OBJECT

;; force them to provide their own accessors, this is a bit more
;; general, and besides, we need to do declare-fn-type. (via hook)
:INITIALIZATIONS (LIST (CONS-RHET-FORM

'RLLIB: :ASSERT-RELATIONS
(RHET-TERMS: CREATE-RVARIABLE "?SELF")
:STEPS
:T)))

;; actions (steps in a plan) must be a subtype of this. Necessary slots
;; common to all actions defined here.
(DEFINE-SUBTYPE 'T-ACTION 'T-AGENT-OBJECT)
(TDISJOINT 'T-ACTION 'T-PLAN) ; plans are not actions, and vice-versa
;; Plans that can be construed as a complete plan are subtypes of this.
;; See thesis for information about "END" types. (Henry makes END an ab-
;; straction for certain kinds of plans, RPRS makes it a subtype relation-
;; ship only. This also prevents going thru each abstraction separately.)
(DEFINE-SUBTYPE 'T-RPLAN 'T-PLAN)
;; for non-end (recognizable) plans, they inherit from this.
(DEFINE-SUBTYPE 'T-CPLAN 'T-PLAN)
;; note that these types partition the plan type, either you are a
;; recognizable plan, or you are not.
(TXSUBTYPE 'T-PLAN 'T-CPLAN 'T-RPLAN)
(LOAD "rprs :code; rhet-code .lisp"))

Figure 6.2: RPRS's Reset-RPRS function - type hierarchy

34 CHAPTER 6. RPRS LISP INTERFACE TO RHET

(DEFUN STEP-RFLATION-DEFINITION-HOOK (TYPE STEPS)
"Called when define-(functional-)subtype is about to reparse

constraints/relations/initializations.
This lets step accessors be properly declared first."

(MAPC V'(LAMBDA (STEP)
(UNLESS (LOOK-UP-FN-TYPE (CAR STEP))

;; never before defined;
;; this will set an appropriate maxtype.
(DECLARE-FN-TYPE (CAR STEP) (LIST 'T-PLAN 'T-AGENT-OBJECT))

(ADD-FN-TYPE (CAR STEP)
(LIST TYPE

(LET ((RHET-TERMS::*BE-PERMISSIVE* T))
(DECLARE (SPECIAL

RHET-TERMS::*BE-PERMISSIVE*))
(GET-TYPE-OBJECT (CDR STEP))))))

STEPS))

Figure 6.3: Hook to describe step usage to define-subtype

(DEFUN DEFINE-ACTION-TYPE (TYPE &REST ARGS
&KEY (PARENT 'T-ACTION) &ALLOW-OTHER-KEYS)

"Defines a RPRS compatible Action type, which may appear as a constructor
function in a step.

Warning: be sure to define these BEFORE use, otherwise types won't get
updated properly.
(and RPRS will not find any applicable plans with steps.)"

(APPLY #'DEFINE-FUNCTIONAL-SUBTYPE (LIST* TYPE PARENT ARGS)))

Figure 6.4: Defining an Action Type

6.4. THE EXPLANATION GENERATOR 35

(DEFUN DEFINE-CPLAN-TYPE (TYPE kREST ARGS &KEY (PARENT 'T-CPLAN) STEPS

&ALLOW-OTHER-KEYS)
"Defines a RPRS compatible Plan type, which may NOT be returned by the

recognizer as a 'complete' plan, rather it is a Constituent PLAN"

(DEFINE-PLAN-TYPE-COMON TYPE PARENT :CPLAN STEPS ARGS T))

Figure 6.5: Cplan Type Definition

which will be used later by the explain-observations function to find what plans have a
particular observed step. Note that this function handles steps that don't have a CAR of
th- accessor, and so generates the default one that Assert-Relations would expect. While
this is contrary to the usage declared in our Reset-RPRS function, it is more robust; it allows
us to change how we handle this later5 .

6.4 The Explanation Generator

6.4.1 Finding Relevant Plan Types to Instantiate

This is the guts of the frob. Figure 6.7 shows us taking our event-list and finding a series
of proofs based on the predicate [Cover-Observations], presented in figure 6.10, which is
the entry point into a Rhet BC program elaborated on further in the varinis figures.

6.4.2 Instantiation of Plans

Now we have a list of proofs, which are essentially just a list of plans each of which ex-
plain all of the observations, but are not necessarily internally consistent with the actual
observations.

In order to find any possible inconsistency we must instantiate the actual plans, which
will cause the definitions of types, the relations, constraints between roles, etc. to be ex-
panded. Figure 6.16 shows the remainder of the Explain-Observations function which does
this instantiation. The interesting point is that we set up a catch for inconsistencies Rhet
detects, and do each instantiation in a gensym'd child context... That way the inconsis-
tencies are removed when we destroy this temporary context. Otherwise the context is left
and returned as part of the result of the explain.

'The only dependency that forcps us to use explicit accessors is our hook function into Define-Subtype.
If the hook were expanded to include the relative offset into the list of relations...

36 CHAPTER 6. RPRS LISP INTERFACE TO RHET

(DEFUN DEFINE-PLAN-TYPE-COMMON (TYPE PARENT-TYPE CODE STEPS ARGS
&OPTIONAL FUNCTIONAL)

(COND
(STEPS

define-subtype would do the tsubtype call, but we want to define
appropriate fn types for our steps first.

(TSUBTYPE PARENT-TYPE TYPE)
(APPLY (IF FUNCTIONAL #'DEFINE-FUNCTIONAL-SUBTYPE #'DEFINE-SUBTYPE)

TYPE PARENT-TYPE
:RELATIONS '((:STEPS ,@STEPS)

,Q(GRAB-KEY :RELATIONS ARGS)) ARGS)
invert the steps
(we could handle, but don't, having step relations inside of ARGS)

(LET ((NUMBER 0))
;; this picks up inherited steps so they get properly inverted.
(DOLIST (STEP (RHET-TERMS:GET-RELATIONS :STEPS TYPE))
(INCF NUMBER)
(LET ((STEP-TYPE (GET-TYPE-OBJECT (IF (CONSP STEP)

;; Has accessor
(CDR STEP)
STEP)))

we don't currently handle accessor string for
assert-relations, only :t or default.

(CURRENT-ACCESSOR (IF (CONSP STEP)
(CAR STEP) ; accessor
(INTERN ; default
(FORMAT NIL "STEPS-dd" NUMBER)
'KEYWORD))))

(LET ((AXIOM (CONS-RHET-AXIOM
(CONS-RHET-FORM

:HAS-STEP CODE
(INTERN (STRING TYPE) 'KEYWORD)
(INTERN (STRING STEP-TYPE) 'KEYWORD)
CURRENT-ACCESSOR))))

(SETF (B-AX:BASIC-AXIOM-INDEX AXIOM)
"INDEX-<RPRS-ASSERTION")

(ASSERT-AXIOMS AXIOM))))))
(T
(APPLY (IF FUNCTIONAL #'DEFINE-FUNCTIONAL-SUBTYPE #'DEFINE-SUBTYPE)

TYPE PARENT-TYPE ARGS))))

Figure 6.6: Common Plan Type Definition

6.4. THE EXPLANATION GENERATOR 37

(DEFUN EXPLAIN-OBSERVATIONS (WREST EVENT-LIST)
"Return a list of lists whose cars are a possible Plan that describe all

of EVENT-LIST, and whose cdr is the context this instance is instantiated
in. Each EVENT object is an instance of a subtype of T-Action.

Note that one can make following calls to Explain-Observations passing one
of these returned contexts; this would constrain the world to be
consistent with the previous discovered plan."

(DECLARE (ARGLIST (&REST EVENTS &OPTIONAL (UCONTEXT "T"))))
;; try to find entries

;; this step will depend on the particular algorithm. Now, assume they
;; must be related

(LET* ((UCONTEXT (GRAB-KEY :UCONTEXT EVENT-LIST "T"))
(EVENT-LIST (TRUNCATE-KEYWORDS EVENT-LIST))
(PLAN-LIST (RHET-TERMS:CREATE-RVARIABLE

"?plan-list" RHET-TERMS:*T-LIST-ITYPE-STRUCT*))

;; each value is
;; [has-step-recursive event-type plan-type (plan-type step)]
CANDIDATES
RETURN-VALUE)

(PROVE (CONS-RHET-FORM 'COVER-OBSERVATIONS EVENT-LIST PLAN-LIST)
:MODE :SIMPLE) ;side effect changes plan-list

(SETQ CANDIDATES (E-UNIFY:CRUNCH-VARS-IN-ARBFORM
(E-UNIFY:GET-VAR-REFERENCE PLAN-LIST)))

;; now we must instantiate each possibility so Rhet will calculate
;; constraints. Set up handlers for certain kinds of errors Rhet may
;; generate. 'rprs-contradiction-found is thrown by rhet thanks to the
;; set-contradiction-mode in reset-rprs.

;; Catch them here and then we know that particular plan is impossible.
(FORMAT T "Candidates for matching: -S" CANDIDATES)

Figure 6.7: Generating Explanations - Doing Proofs in Rhet

38 CHAPTER 6. RPRS LISP INTERFACE TO RHET

#[;keep ?step-type from being detected as "different".
(DEFRHETPRED COVER-INITIAL-OBSERVATION (?STEP*T-U ?PLAN-LIST*T-LIST)

CRPRS [TYPE? ?STEP ?STEP-TYPE*T-ANYTHING)
ESETVALUE ?PLAN-LIST-PROTOTYPE*T-LIST

(PROVE-ALL [HAS-STEP-RECURSIVE ?STEP-TYPE
?STEP
?RPLAN-TYPE*T-ATOM
?ASSERT-LIST*T-LIST]

:MODE :SIMPLE)]

[PROOF-LIST-TO-STEP-LIST ?PLAN-LIST-PROTOTYPE ?PLAN-LIST])
#]

Figure 6.8: Rhet Code for Finding Plan Types - Cover-Initial- Observation

(ASSERT-AXIOMS
[[COVER-OBSERVATION ?STEP

((OLD-PLAN-TYPE*T-LISP .?OLD-PLAN-STEPS)
.?KORE-CLD-PLANS)

?NEW-PLAN-LIST*T-LIST]
<RPRS [TYPE? ?STEP ?STEP-TYPE*T-ANYTHING)

ESETVALUE ?NEW-PLAN-PROTOTYPES*T-LIST

(PROVE-ALL [HAS-STEP-RECURSIVE ?STEP-TYPE

?STEP

?OLD-PLAN-TYPE
?ASSERTIONS*T-LIST]

:MODE :SIMPLE)]
[PROOF-LIST-TO-STEP-LIST ?NEW-PLAN-PROTOTYPES

?NEW-PLAN-LIST- 1*T-LIST]
EMERGE-PLAN-INSTANCES ?OLD-PLAN-TYPE

?OLD-PLAN-STEPS
?NEW-PLAN-LIST- 1
?MERGED-PLAN-LIST*T-LIST)

(COVER- OBSERVATION ?STEP ?MORE-OLD-PLANS ?NEW-PLAN-LIST- 2*T-LIST]
(APPEND ?MERGED-PLAN-LIST ?NEW-PLAN-LIST-2 ?NEW-PLAN-LIST)]

[[COVER-OBSERVATION ?STEP NIL NIL] <RPRSI)

Figure 6.9: Rhet Code for Finding Plan Types - Cover- Observation

6.4. THE EXPLANATION GENERATOR 39

(DEFRHETPRED COVER-OBSERVATIONS ((?STEP*T-U . ?STEP-LIST*T-LIST)
?NEW-PLAN-LIST*T-LIST)

<RPRS [COND ; use COND for example purposes
([NULL ?STEP-LIST]
[COVER-INITIAL-OBSERVATION ?STEP ?NEW-PLAN-LIST])

([WIN]
[COVER-OBSERVATIONS ?STEP-LIST ?NEW-PLAN-LIST- 1*T-LIST]
[COVER-OBSERVATION ?STEP ?NEW-PLAN-LIST-1 ?NEW-PLAN-LIST)I)

Figure 6.10: Rhet Code for Finding Plan Types - Cover- Observations

(ASSERT-AXIOMS
[[PROOF-LIST-To-STEP-LIST ([HAS-STEP-RECURSIVE ?STEP-TYPE*T-LISP

?STEP*T-U
?RPLAN-TYPE*T-LISP

?ASSERT-LIST*T-LIST]
*?NORE-PROOFS)

(?ASSERT-LIST . ?MORE-PLAN-LISTS)]
<RPRS (PROOF-LIST-TO-STEP-LIST ?MORE-PROOFS ?MORE-PLAN-LISTSJJ
[[PROOF-LIST-TO-STEP-LIST NIL NIL) (RPRS)

Figure 6.11: Rhet Support Code for Parsing Plan Proofs - Proof- List-to- Step- List

40 CHAPTER 6. RPRS LISP INTERFACE TO RHET

(ASSERT-AXIOMS
[EMERGE-PLAN-INSTANCES ?PLAN-TYPE*T-LISP

?PLAN-STEPS*T-LIST
C (?PLAN-TYPE . ?OLD-PLAN-STEPS*T-LIST)

.?MORE-OLD-PLANS*T-LIST)
?MERGED-PLANS*T-LIST]

<RPRS ECOND ([MERGE-STEPS ?PLAN-STEPS
?OLD-PLAN-STEPS
?MERGED-STEPS*T-LIST]

[UNIFY ((?PLAN-TYPE . ?MERGED-STEPS) . ?MORE-NEW-PLANS)
?MERGED-PLANS]

[MERGE-PLAN- INSTANCES ?PLAN-TYPE
?PLAN-STEPS

?MORE-OLD-PLANS

?MORE-NEW-PLANS])
([WIN]
[MERGE-PLAN-INSTANCES ?PLAN-TYPE

?PLAN-STEPS
?MORE-OLD-PLANS
?MERGED-PLANS)]]

[[MERGE-PLAN-INSTANCES ?PLAN-TYPE*T-LISP ?PLAN-STEPS*T-LIST NIL NIL]
<RPRSJ)

Figure 6.12: Rhet Support Code for Parsing Plan Proofs - Merge- Plan- Instances

(ASSERT-AXIOMS
[[MERGE-STEPS (C?STEP*T-ATOM ?OBS*T-ANYTHING) . ?MORE-STEPS)

?OLD-PLAN-STEPS*T-LIST
?MERGED-STEPS*T-LIST)

<RPRS [MERGE-STEP ?STEP ?OBS 'OLD-PLAN-STEPS ?UPDATED-STEPS*T-LIST]
[MERGE-STEPS ?MORE-STEPS ?UPDATED-STEPS ?KERGED-STEPS))

[EMERGE-STEPS NIL ?OLD-STEPS*T-LIST ?OLD-STEPS) <RPRS))

Figure 6.13: Rhet Support Code for Parsing Plan Proofs - Merge-Steps

6.4. THE EXPLANATION GENERATOR 41

(ASSERT-AXIOMS
[[MERGE-STEP ?STEP*T-ATOM

?OBS*T-ANYTHING
C (?OLD-STEP*T-ATOM ?OLD-DBS*T-ANYTHING)

. ?MORE-OLD-STEPS*T-LIST)
((?OLD-STEP ?OLD-OBS) (?STEP ?OBS) ?MORE-OLD-STEPS)]

<RPRS) ; may eventually want to check compatibility if
; ?old-step is eq to ?step

[[MERGE-STEP ?STEP*T-ATOM ?OBS*T-ANYTHING NIL (?STEP ?OBS)] <RPRS])

Figure 6.14: Rhet Support Code for Parsing Plan Proofs - Merge-Step

42 CHAPTER 6. RPRS LISP INTERFACE TO RHET

(DEFRHETPRED HAS-STEP-RECURSIVE W&OUND ?STEP-TYPE*T-LISP
?STEP-CF*T-ANYTHING

&ANY ?PLAN-TYPE*T-ATOM
&UNBOUND ?ASSERTION-LIST*T-LIST)

"True for a ?step-type in rplan ?plan-type making assertions in
?assertion-list, whose CAR is a plan type, and CADR is the atop number in
the plan to be asserted equal to the step, and whose CDDR is another
assertion-list (whose object is this just defined thing.)

i.e. (t-foo-plan si t-bar-plan s2) means that the passed step is si in
t-f 00-plan, and this t-f 00-plan instance is s2 of a t-bar-plan."

);nothing declared here, since our RHSs need different LHSs ...

(ASSERT-AXIOMS
[[HAS-STEP-RECURSIVE ?STEP-TYPE*T-LISP

?STEP-CF*T-ANYTHING
?RPLAN-TYPE*T-ATOM
(?RPLAN-TYPE*T-ATOM

(?STEP*T-ATOM ?STEP-CF*T-ANYTHING))J
<RPRS [HAS-STEP :RPLAN ?RPLAN-TYPE ?MATCHED-STEP-TYPE*T-LISP ?STEP]

[NOT [TYPE-RELATION ?STEP-TYPE :DISJOINT ?MATCHED-STEP-TYPEfl]

[[HAS-STEP-RECURSIVE ?STEP-TYPE*T-LISP
?STEP-CF*T-ANYTHING
?RPLAN-TYPE*T-ATOM
?A-LIST*T-LIST)

<RPRS [HAS-STEP :CPLAN
?CPLAN-TYPE*T-LISP
?MATCHED-STEP-TYPE*T-LISP
?STEP*T-ATOM]

[NOT [TYPE-RELATION ?STEP-TYPE :DISJOINT ?MATCHED-STEP-TYPEJ]
[HAS-STEP-RECURSIVE ?CPLAN-TYPE

(?CPLAN-TYPE
(?STEP*T-ATOM ?STEP-CF*T-ANYTING))

?RPLAN-TYPE
?A-LIST])

Figure 6.15: Rhet Code for Examniing KB - Has- Step- Recursive

6.4. THE EXPLANATION GENERATOR 43

(DOLIST (CURRENT-PROOF-ENTRY (UNLESS (HNAME:RVARIABLE-P CANDIDATES)
CANDIDATES))

generate a new context to make the attempt in.
(LET ((TEST-CONTEXT (PROGI (STRING (GENSYM "RPRS-Test-Context")))))

(CREATE-UCONTEXT TEST-CONTEXT UCONTEXT)
(LET* ((*DEFAULT-CONTEXT* (UCONTEXT TEST-CONTEXT))

;; so adds and proof done in this new context.
(RHET-TERMS:*CURRENT-CONTEXT* *DEFAULT-CONTEXT*)
RPLAN-INSTANCE
(ABORT T))

(DECLARE (SPECIAL *DEFAULT-CONTEXT* RHET-TERMS:*CURRENT-CONTEXT*))
;; for this CURRENT-PLAN instantiate it.
(CATCH 'RPRS-CONTRADICTION-FOUND

;; add equalities for the EVENTs and if we actually finish,
;; we have succeeded in showing by construction
;; a consistent plan which "explains" all the observed events.
(LABELS ((CREATE-PLAN (PLAN-TYPE STEP-ENTRIES)

(LET ((INSTANCE (DEFINE-INSTANCE
(CONS-RHET-FORM

(GENSYM "CUR-PLAN"))
PLAN-TYPE)))

(DOLIST (STEP-ENTRY STEP-ENTRIES)
(ADD-EQ (IF (CONSP (SECOND STEP-ENTRY))

(CREATE-PLAN
(CAR (SECOND STEP-ENTRY))
(CDR (SECOND STEP-ENTRY)))

(SECOND STEP-ENTRY))
(CONS-RHET-FORM (FIRST STEP-ENTRY)

INSTANCE)
:HANDLE-ERRORS T))

INSTANCE)))
(SETQ RPLAN-INSTANCE (CREATE-PLAN

(CAR CURRENT-PROOF-ENTRY)

(CDR CURRENT-PROOF-ENTRY))))
(SETQ ABORT NIL))

(IF ABORT
(DESTROY-UCONTEXT TEST-CONTEXT) ; error
(PUSH (LIST RPLAN-INSTANCE TEST-CONTEXT) RETURN-VALUE)))))

RETURN-VALUE))

Figure 6.16: Generating Explanations - Building Instances in Rhet

44 CHAPTER 6. RPRS LISP INTERFACE TO RHET

Chapter 7

RPRS Function Reference

Define-Action-Type Type &Rest Args &Key (Parent 'T-Action)
Defines an RPRS compatible Action type, which may appear as a constructor function
in a step. Warning. be sure to define these before use, otherwise types won't get
updated properly (and RPRS will not find any applicable plans with steps). Args are
as one would pass to Rhet's Define-Functional-Subtype. Actions may NOT use the
STEPS relation, however.

Define-Cplan-Type Type &Rest Args &Key (Parent 'T-Cplan) Steps
Defines an RPRS compatible plan type, which may not be returned by the recognizer
as a "complete" or "Recognized" plan, rather it is a "Constituent" plan. It is intended
to appear as a step in some other constituent or recognized plan, but may no. be an
observed action (i.e. an argument to Explain-Observations). The format of the Steps
argument is special: it is a list of entries indicating the constructor functions for the
actions (or other Cplans) that are the steps to implement this Cplan. An entry is a
cons, whose car is a keyword that is the accessor for the step, and whose cdr is this
constructor function. For example,

(7.1) '#[((:S-1. [C-make-noodles [F-AGENT ?SELF]

?TIME-S-1*T-TIME

?RESULT*T-NOODLE-DISH])
(:S-2. [C-make-sauce [F-AGENT ?SELF]

?TIME-S-2*T-TIME])) #]

might be the Steps entry for some Cplan. Note the use of Rhet's #[operator; this is
to assure that all references to ?self are identical in the list. To reference a particular
step, say, in the initializations or constraints field, one uses the accessor (without the
colon) as the head of a form, e.g. [S-1 ?self] would refer to the step with accessor :S-1
of my type. By default, STEPS are defined as a MERGE relation in Rhet, which

45

46 CHAPTER 7. RPRS FUNCTION REFERENCE

means tl-At subtypes may define new Steps, and if the accessors are the same, the new
definition replaces' the old, while other steps are simply inherited.

Define-Rplan-Type Type &Rest Args &Key (Parent 'T-Rplan) Steps
Defines an RPRS compatible plan type, which may be returned by the recognizer
as a "complete" or "Recognized" plan. It may not be used as a step in either
a constituent or recognized plan, nor may it be an observed action (i.e. an ar-
gument to Explain-Observations) 2 . For an explanation of the Steps argument, see
Define-Cplan-Type, above.

Explain-Observations &Rest Actions &Key Ucontext
This returns a list of lists, whose cars are possible Plan instances that describe all
of the passed Actions, and whose cdr is the name of the Rhet user context that this
instance is instantiated in. Each action object must be an instance of a subtype of
T-Action. The Ucontext, if present, should be a Rhet user context defined directly to
Rhet, or one passed back from a previous call to Explain-Observations.

Note that one can make subsequent calls to Explain-Observations passing in one of
these returned contexts, this constrains the new explanations to be consistent with
the previously discovered plan (providing, of course, that such links are properly
added, e.g. that some step in this new plan is equal to the previously discovered
plan).

Show-Explanation (Plon-Instance Context)
Given a cons, such as an element of the result of Explain-Observations, this pretty prints
out the explanation for the user, that is, it shows the Rhet type of the recognized plan,
it's steps, etc..

Reset-RPRS
This function resets the RPRS system (and the underlying Rhet and TEMPOS sys-
tems) to their just-loaded and initialized condition.

'Actually specializes, since the type of the new constructor must be a subtype of the old.
2 Future implementation of RPRS could lift the restriction on allowing Rplans to be steps in other Rplans,

but the code is much more efficient and easy to understand with this restriction.

Appendix A

Installing and Running RPRS

RPRS is supplied on the same tape as the Rhet system and TEMPOS. After restoring the
distribution, just do ":Load System RPRS" and then RPRS functions will be exported to
the RHET-USER package. It can then be easily used with the Rhet window interface. Be
sure to use ":Reset RPRS' instead of ":Reset Rhetorical" ' 2, however, or else not only will
TEMPOS not be reset, but Rhet's will not be correctly configured to work with the RPRS
system and will cause strange results3.

'Reset-RPRS
2 Reset-Rhetorical
3 Resetting RPRS causes a number of Rhet's options to be changed from the default setting that is

restored after resetting Rhet.

47

48 APPENDIX A. INST4L jING AND RUNNING RPRS

Bibliography

[Allen, 1983] James F. Allen, "Maintaining Knowledge About Temporal Intervals," Com-
munications of the ACM, 26(11):832-843, 1983.

[Allen, 1990] James F. Allen, "Unknown at press time," Technical report, University
of Rochester, Computer Science Department, 1990, Forthcoming; presented at 1988
workshop on Principles of Hybrid Reasoning, 21 August, 1988 St. Paul, Minnesota.

[Allen and Koomen, 1983] James F. Allen and Johannes A. Koomen, "Planning Using
a Temporal World Model," In Proccedings 8th IJCAI, pages 741-747, Karlsruhe, W.
Germany, August 1983.

[Allen and Miller, 1989] James F. Allen and Bradford W. Miller, "The Rhetorical Knowl-
edge Representation System: A User's Guide," Technical Report 238 (rerevised), Uni-
versity of Rochester, Computer Science Department, March 1989.

[Kautz, 1987] Henry A. Kautz, "A Formal Theory of Plan Recognition," Technical Report
215, University of Rochester, Computer Science Department, May 1987, PhD Thesis.

[Koomen, 1988] Johannes A.G.M. Koomen, "The TIMELOGIC Temporal Reasoning Sys-
tem," Technical Report 231 (revised), University of Rochester, Computer Science De-
partment, October 1988.

[Koomen, 1989] Johannes A.G.M. Koomen, "Reasoning About Recurrence," Technical
Report 307, University of Rochester, Computer Science Department, July 1989, PhD
Thesis.

[Mil]er, 1989] Bradford W. Miller, "Rhet Programmer's Guide," Technical Report 239
(rerevised), University of Rochester, Computer Science Department, March 1989.

[Nilsson, 1980] N. J. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann, 1980.

49

Index

[Assert-Relations], 11, 12

[Cover-Initial-Observation], 38
[Cover-Observation], 38
[Cover-Observations], 35, 39

(Define-Action-Type), 34, 45
(Define-Cplan-Type), 11, 35, 45
(Define- Functional- Subtype), 32
(Define- Plan- Type- Common), 36
(Define-Rplan-Type), 11, 32, 46
(Define-Subtype), 32

(Explain-Observations). 9, 11, 13, 35, 37,
43, 46

[Has- Step-Recursive], 42

hooks

relations, 34

[Merge-Plan-Instances], 40
[Merge-Step], 41
[Merge-Steps], 40

[Proof-List-to-Step-List], 39

(R-AGENT), 9
(Reset-Rhetorical), 47
(Reset-RPRS), 32, 33, 35, 46, 47

(Show-Explanation), 13, 46

(T-ACTION), 9
(T-AGENT-OBJECT), 9, 11
(T-ANIMATE), 9
(T-CPLAN), 11
(T-PLAN), 11
(T-RPLAN), 11
(T-TIME), 6
(TSubType), 32

50

